
An Object-Oriented Serial DSMC Simulation Package
Hongli Liu and Chunpei Cai

Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico,
88003, USA

Abstract. A newly developed three-dimensional direct simulation Monte Carlo (DSMC) simulation package, named GRASP
(“Generalized Rarefied gAs Simulation Package”), is reported in this paper. This package utilizes the concept of simulation
engine, many C++ features and software design patterns. The package has an open architecture which can benefit further
development and maintenance of the code. In order to reduce the engineering time for three-dimensional models, a hybrid
grid scheme, combined with a flexible data structure compiled by C++ language, are implemented in this package. This
scheme utilizes a local data structure based on the computational cell to achieve high performance on workstation processors.
This data structure allows the DSMC algorithm to be very efficiently parallelized with domain decomposition and it provides
much flexibility in terms of grid types. This package can utilize traditional structured, unstructured or hybrid grids within the
framework of a single code to model arbitrarily complex geometries and to simulate rarefied gas flows. Benchmark test cases
indicate that this package has satisfactory accuracy for complex rarefied gas flows.

Keywords: DSMC implementation, hybrid grid
PACS: 47.45.-n

1. INTRODUCTION

THE spaceport program in the New Mexico state demands for more research and education on space weather and
hypersonic flows. As one part of the new aerospace engineering program in the New Mexico State University, we are
developing a new set of compressible gas/plasma simulation packages, to serve as the education and research platforms
for rarefied gas and plasma flows, such as those associated with hypersonic re-entry flows and space weather. This
package is named GRASP (“Generalized Rarefied gAs Simulation Package”).

For the DSMC method, there are several established implementations, including those educational programs by
Bird [1]. Several other research groups developed different DSMC packages, such as SMILE [2], MONACO [3], and
DAC [4]. In this paper, we will present the GRASP code architecture, data structure, a three dimensional simulation
meshing method and other preliminary implementations of this object-oriented package.

Like most numerical methods, grid scheme plays an important role in efficient and accurate predictions by the
DSMC method. Generally in GRASP, unstructured mesh systems are used for two-dimensional and axi-symmetric
simulations to guarantee the program’s stability and precision. For three-dimensional case, GRASP divides the
computational domain into uniform cubic solid grids to track molecular trajectories efficiently, whereas the object
surface is triangulated by any major CAD/CAE software and read in by the package. As such, GRASP is not only much
efficient with unstructured meshes, but also capable of representing the objects’ surface details with high precision.
During the simulation process, most of simulated molecules are efficiently tracked within a cartesian coordination
system, while the small region adjacent to the object surface is treated delicately like in an unstructured grid scheme.

2. THE DATA STRUCTURE

One important concept that GRASP adopts is “simulation engine”. For DSMC simulation packages, usually there are
two levels: cells and particles. However, only these two levels can not guarantee the package as good architecture for
further development and can not fully utilize the advantages of C++ language. As a common major defect for different
dimensions, different files and subroutines or conditional compilations are necessary in many DSMC packages. We
introduce several classes of simulation engines which have internal inherence relations, as such two-dimensional, axi-
symmetric, and three-dimensional simulation codes can coexist in the same package, and the usage of conditional
compilation, “#ifdef” can be reduced to a minimum. Figure 1 shows the internal relations for several engine classes.



There are two popular particle storage data structures. One is described in the book by Bird [1], to utilize a large
whole array storing information for all the particles; the other approach is to utilize linked lists inside each cell, i.e.,
to divide the single complete particle table into many small linked lists for each cell. In GRASP, we adopt the single
large particle array [1], as such, less attention is needed since changing particle’s location from one cell to another only
requires a cell id change for the particle. The particle table in GRASP is resizable when more particles are needed, but
currently the particle table is full. The particle table class can automatically apply for a double-sized memory chunk in
the free store memory area, copy the current particle table to the larger memory chunk and release the memory storage
for the smaller table. The memory for the mesh table is fixed. Figure 2 illustrates the two-dimensional engine class
that contains two container classes for the particle and mesh.

 

FIGURE 1. Relations of various simulation engine classes in GRASP-P1.0.

FIGURE 2. Resizable particle table and fixed mesh table inside a 2D simulation engine class.

GRASP-P1.0 is written in C++ language and it utilizes many special design patterns. One major consideration to
introduce the concept of simulation engine is to resolve the architecture and interface conflict for future development.
One class solely regulates the type of interfaces that it should consider, while its daughter classes, such as two-
dimensional simulation engine class, concentrates on special function bodies definition. The other further derived
classes from the daughter class concentrate on special function bodies to override. As such, GRASP has an open
architecture, and we can add different simulation methods into this single package. Special design pattern, such as
singleton [5] is implemented for the simulation engine class, which provides good code accessability.

The class concept in C++ is also used to package different elementary data variables and functions together into
one data structure representing a DSMC cell. Its features, such as encapsulation and inheritance, can help to maintain
the code in terms of scalability, portability, and commonality. For a 3D simulation situation, there are many space
structures (such as cells) similar to cubic boxes. Many three-dimensional operations of GRASP-P1.0, such as particles’
motions through the cells, collisions with the wall, are incorporated inside the boundary box class.

3. THE HYBRID MESH SYSTEM FOR 3D SIMULATIONS

For engineering applications, three-dimensional problems are of special interest because they can represent the flow
fields more accurately than two-dimensional simplifications. However, to generate the meshes for three-dimensional
problems with CAD software usually requires much engineering effort. In GRASP-P1.0, we implement a hybrid mesh



method which requires simpler input of a triangulated object surface, while the real three dimensional cubic meshes
are generated internally without user interactions. This is achieved with a special simulation engine class “Cart3D
simulation engine”. As mentioned above, simulated molecules interact with walls many times. It is an important
process in the DSMC simulation to handle the interactions between particles and the body surfaces accurately. In the
GRASP-P1.0 three-dimensional scheme, to find the relationship of the wall and the space grids is one of the key pre-
processing steps. There is a procedure which can directly and accurately identify and record body surfaces’ distribution
within the three-dimensional cubic cells [6]:

1). Triangulate the object body surfaces freely and record their geometry information. Any major CAD software
packages can accomplish this task; and output the results for GRASP to read in. This is the only external pre-processing
step required by GRASP;

2). Automatically determine the large simulation domain. For example, the outer simulation domain of a spacecraft
is automatically determined by offsetting the bounding box of the spacecraft;

3). Divide the whole computational domain into uniform cubic solid cells;
4). Identify the surface triangles and the spatial 3D cubic cells by two series of numbers; and if a body surface

triangle is related to one cubic cell, record this relationship.
5). Record the numbers and the serial numbers of the surface triangles related to the current cell, and book the

related cells with every surface triangle one by one. In GRASP, these records are stored in two fixed size arrays.
Steps 3,4,5 are accomplished by one C++ class. Obviously by automatically generating the three-dimensional mesh,

this can reduce the engineering time for the whole simulation. At the same time, utilizing a cubic mesh can significantly
increase the simulation speed, because the module of particle movement is greatly simplified.

4. TEST CASES

To demonstrate the capability of the GRASP package, we include two test cases in this paper. We compare the
simulation results with those obtained by another established DSMC package or analytical results. The object surfaces
in the test cases are assumed to be fully diffuse here.

4.1. Hypersonic Flow over a Wedge

The first test case is a hypersonic flow around a 40◦ wedge with a 10◦ angle of attack. As such, the top side of the
wedge is equivalent to a 10◦ wedge and the bottom side is equivalent to a 30◦ one. The temperature of free stream argon
gas flow is 200 K, the Mach number is 10, and the number density is 1.3×1020 m−3. The wedge wall temperature is
300 K. The free stream Knudsen number is 0.05, the characteristic length of this case is the wedge base length.

1
2

3
4
5

6 4 5

3

2

4
5

678

9

10

X, m

Y
,m

0 0.2 0.4 0.6 0.8 1
-0.4

-0.2

0

0.2

0.4

10 4000
9 3600
8 3200
7 2800
6 2400
5 2000
4 1600
3 1200
2 800
1 400

T (K)

FIGURE 3. Temperature contours for a hypersonic flow over a wedge, Ma=10. Unit: K. Solid line: GRASP; dashed line:
MONACO



1

2

3

3

4

2 1

1
2

3
4

5

6
7

8
9

X, m
Y

,m
0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

10 1.2E-04
9 9.1E-05
8 6.9E-05
7 5.2E-05
6 4.0E-05
5 3.0E-05
4 2.3E-05
3 1.7E-05
2 1.3E-05
1 1.1E-05

ρ (kg/m 3)

FIGURE 4. Density contours for a hypersonic flow over a wedge, Ma=10. Unit: kg/m3. Solid line: GRASP; dashed line:
MONACO

Figures 3 and 4 show that GRASP-P1.0 and MONACO predict virtually identical results for the temperature and
density contours around the wedge, two different shock waves with different shapes at the front sides and the expansion
waves at the rear side display clearly. The solid lines represent the GRASP-P1.0 simulation results, while the dashed
lines are the MONACO results.

FIGURE 5. Temperature contours for a hypersonic flow over a sphere, Ma=5, Unit: K.

4.2. Hypersonic Free Molecular Flow over a Sphere

The next test case is a hypersonic free molecular flow over a sphere, simulated with GRASP-P1.0 three dimensional
simulation engine with hybrid grids. The temperatures of the free stream argon gas flow and the sphere wall are 300
K. The free stream number density at inlet is 1.0× 1020 m−3. The radius of the sphere is 0.5 m. The purpose of this
example is to validate the 3D particle movement module of the package, and compare some surface properties.

The cartesian grid system is utilized in all of the flow fields. The simulation volume is a cubic zone, and at the center
is the object region representing a sphere, while the other six external surfaces are obtained by offsetting the bounding
box covering the internal sphere. The offset values are regulated by input from a file, as such, adjusting the simulation
domain and generating the internal mesh are highly automatic- it can be achieved by specifying or altering a parameter
in the file, and the corresponding engineering time to solve this problem is thus significantly reduced.

Figure 5 shows the temperature distributions in the middle plane, to better illustrate the comparison, only the front
side contours are compared. The solid lines represent the GRASP-P1.0 simulation results, while the dashed lines are
the analytical results for collisionless flow over a sphere [7]. As we can see, even though the flow is collisionless, due



θ

2p
/(

ρ 0U
02 )

-90 -60 -30 0 30 60 90
0

0.5

1

1.5

2

2.5

FIGURE 6. Normalized pressure distribution on sphere surface.

θ

2q
/(

ρ 0U
03 )

-90 -60 -30 0 30 60 90
0

0.2

0.4

0.6

0.8

1

1.2

FIGURE 7. Normalized heat flux distribution on sphere surface.

to the high Mach number, in front of the sphere, the highest temperature can reach over 2200 K. It is also evident
that for the 3D simulation, GRASP-P1.0 results have very good agreement with the analytical results. Figures 6 and
7 are comparisons of sphere surface pressure and heat flux results obtained by GRASP-P1.0 and the corresponding
analytical results. It is evident that the three-dimensional simulation and analytical results are very close.

5. CONCLUSIONS

We have reported our development of a new object-oriented DSMC simulation package, GRASP-P1.0. This package
is developed utilizing C++ and several design patterns, such as inheritance and singleton. We introduced the concept
of simulation engine and included ten major classes in the package. The simulation engine concept successfully solves
the conflicts between functionalities and interfaces. The architecture of GRASP-P1.0 is open for further development
and is maintenance friendly, and we achieve two-dimensional, axisymetric, and three-dimensional simulation methods
in a single package, and reduce the uses of conditional compilation to a minimum.

Another novel feature of GRASP-P1.0 is that we implemented the cartesian grids with C++ into the package as
a special class. For reentry flow simulations, only triangulated object surface geometry is needed, and other major
control information is provided through a card file. The 3D mesh is generated internally rather than externally, as such
the engineering time for the simulation can be greatly reduced. For example, changing the outer domain size can be
achieved conveniently by changing one input card, and no 3D mesh generation is required. By utilizing cubic cells,



the particle movement module is greatly simplified as well.

ACKNOWLEDGMENTS

We acknowledge the partial financial supports from New Mexico State and ZONA Technology for the development
work on GRASP-P1.0.

REFERENCES

1. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press, New York, 1994.
2. M.S. Ivanov, G.N. Markelov, and S.F. Gimelshein, “Statistical Simulation of Reactive Rarefied Flows: Numerical Approach

and Applications”, AIAA Paper, 98-2669, 1998.
3. S. Dietrich, and I. D. Boyd, Journal of Computational Physics, Vol. 126, 1996, pp.328-342.
4. G.J. LeBeau, “A Parallel Implementation of the Direct Simulation Monte Carlo Method”, Computer Method in Applied

Mechanics and Engineering, Vol. 174, 1999, pp.319-337.
5. E. Gamma, R. Helm, R. Johnson, and Vlissides, J., (Addison-Wesley Profesional Computing Series) Design Paterns: Elements

of Reusable Object-Oriented Software, Addision-Wesley, Boston, 1995.
6. H. Liu, J. Fan, and C. Shen, “Validation of a Hybrid Scheme of DSMC in Simulating Three-Dimensional Rarefied Gas Flows”,

CP663, Rarefied Gas Dyanmics: 23rd International Symposium, Edited by Ketsdever and Muntz.
7. C. Cai, K. R. Khasawneh, H. Liu, and M. Wei, Journal of Spacecraft and Rockets, Vol.46, No.6, November-December, 2009.


